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A hybrid approach to active vibration control is described in this paper. It combines
elements of both wave and mode approaches to active control and is an attempt to improve
on the performance of these approaches individually. In the proposed hybrid approach,
wave control is "rst applied at one or more points in the structure. It is designed on the basis
of the local behaviour of the structure and is intended to absorb vibrational energy,
especially at higher frequencies. Then modal control is applied, being designed on the basis
of the modi"ed global equations of motion of the structure-plus-wave controller. These are
now normally non-self-adjoint. Since the higher order modes are relatively well damped,
hybrid control improves the model accuracy and the robustness of the system and gives
better broadband vibration attenuation performance. Hybrid wave/mode active vibration
control is described with speci"c reference to the control of a cantilever beam. The particular
case considered is that of collocated, point force/sensor feedback wave control combined
with modal control designed using pole placement. Numerical and experimental results are
presented.

( 2001 Academic Press
1. INTRODUCTION

There has been increasing interest in active vibration control in recent years. In part, this is
due to demands for mechanical structures to be lighter and faster, and hence more prone to
vibration, while passive methods, such as adding damping, etc., are often inappropriate. In
active vibration control, desirable performance characteristics are achieved through the
application of control forces to a structure. Usually, the structural response is measured and
used to determine the appropriate control forces.

Vibrations can be described in a number of ways, with the most common descriptions
being in terms of modes and in terms of wave motion. Active vibration control can be
sThis work was performed while the authors were at the Department of Mechanical Engineering, The University
of Auckland, Auckland, New Zealand.
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designed in terms of either modal or wave behaviour, with each method having advantages
and disadvantages. In broad terms, modal control aims to control the global behaviour (i.e.,
the modes of vibration) of the structure while wave control aims to control the #ow of
vibrational energy through the structure. In this paper, a hybrid approach consisting of
complementary wave- and mode-based control is described, which attempts to exploit the
advantages of both methods.

In the modal approach, the response is described in terms of the undamped modes of
vibration of the structure. A "nite number of these modes are retained and the equation of
motion written in matrix form. The equations of motion are then cast in state-space form,
and the control is applied so as to modify the eigenstructure of the state-space equations in
some way. In modal active vibration control, the aim is to control the characteristics of the
modes of vibration [1}10], i.e., their damping factors, natural frequencies or mode shapes.
There are a number of modal control design methods, two of the most widely used
approaches being pole placement and optimal control [11]. Since the modal properties
depend on the global properties of the structure, i.e., the material and geometric properties
and the boundary conditions of the whole structure, this is a global approach. From the
control perspective, modal control has been termed &&high authority'' [12], since it is
designed on the basis of the global behavior of the whole structure.

In a continuous structure, vibrations can alternatively be regarded as being the
superposition of waves travelling through the structure. These waves are re#ected and
transmitted at structural discontinuities. Active wave control aims to control the
distribution of energy in the structure by either reducing the transmission of waves from one
part of the structure to another (i.e., isolating one part of the structure from another) or
absorbing the energy carried by the waves (i.e., adding damping). This is particularly useful
for one-dimensional components in a structure, when a "nite number of waves with given
directions of propagation exist. Wave-based active vibration control is designed purely on
the basis of the di!erential equation of motion and the local properties at and around the
control region and is thus a &&low authority'' approach [12]. Wave control is normally
designed in the frequency domain. Most implementations are feedforward [13}20]. Here
the disturbance is detected, and a control force applied somewhere downstream to produce
a destructive signal to cancel the incoming wave or to absorb the energy associated with it.
Wave control can also be feedback [21}23]. In most previous cases, it has been applied to
control wave motion in one-dimensional waveguides such as bending waves in beams, axial
waves in rods, etc. Optimal controllers are usually non-causal. This re#ects the implicit time
delays involved in the propagation of waves from one point in a structure to another. Time
domain implementations are, therefore, causal approximations to the optimums and are
usually implemented digitally using FIR (or IIR) "lters.

Both modal and wave active control have advantages and disadvantages. The advantages
of modal methods include the generality of the approach and its global nature; the
disadvantages include complexity and robustness problems. Since a continuous structure
has an in"nite number of (often lightly damped) vibrational modes, the control of the entire
in"nity of modes requires in principle an in"nite number of actuators and sensors. In
practice, the control is designed by considering only a "nite number of modes. This
degrades the system's performance. Firstly, control spillover occurs, in which those modes
that are excluded from the designed control output are nevertheless excited. Secondly,
modes that are excluded from the system model still contribute to the sensor measurements,
causing observation spillover. Including more modes improves the performance but
increases the size and complexity of the model, unavoidably increasing computational cost.
Furthermore, the higher modes are inevitably uncertain: there is a trade-o! between
robustness and model accuracy with accurate modelling of the structure being essential for
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successful control system design. The modal properties may even depend on operation
conditions, orientation of the structure, etc. Wave designs are based on the local properties
of the structure and are inherently much less sensitive to system properties and, therefore,
more robust than global models of structures, especially at higher frequencies. However, it
does not consider global motion: the global behaviour can adversely a!ect the amount of
control achieved.

A hybrid approach to active vibration control is described in this paper. It is an attempt
to improve on the performance of modal and wave control approaches individually. It is not
only a hybrid wave/mode approach, but also a hybrid low authority/high authority
method. In the proposed hybrid approach, wave control is "rst designed and is targeted at
higher frequencies. This wave control is intended to absorb vibrational energy and modi"es
the equations of motion of the structure, coupling the modes of the uncontrolled structure.
Modal control is then designed for the lower modes of the structure based on the modi"ed
equations of motion of the structure-plus-wave-controller. Since the higher order modes are
now well damped, the hybrid control improves the model accuracy and the robustness of
the system, and hence gives better broadband vibration attenuation performance.

In principle, there is no restriction on which wave and mode control design approaches
are used. In this paper, however, the particular case considered is that of collocated, point
force/sensor feedback wave control combined with modal control designed using pole
placement. Numerical and experimental results are presented for the case of hybrid control
of a cantilever.

2. HYBRID ACTIVE VIBRATION CONTROL

Hybrid active vibration control is described in this section with particular reference to the
case of the cantilever beam shown in Figure 1. The active control is applied in two stages.
First, localized wave-based control is applied at a number of points*in this paper collocated
point feedback control is adopted, although in principle any method could be used. This
control is designed in the frequency domain and is based on a local model of wave
propagation through the structure at and around the control location. It is intended to absorb
energy, primarily at higher frequencies (above the frequency range for which modal control
is designed). Secondly, active control of the global behaviour of the wave-controlled
structure is then applied using a state-space approach. This is designed to control the lowest
few modes of the wave-controlled structure. Here a pole-placement approach is used,
although, once again, in principle any approach may be utilized. Before considering active
control, the modal behaviour of the uncontrolled structure is described, since the mode shapes
are later used as basis functions to determine the modes of the wave-controller structure.
Figure 1. The cantilever beam.
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2.1. THE UNCONTROLLED STRUCTURE

In the absence of damping, the equation of motion of a system can be written as [11]

¸ (x) w(x, t)#m(x) wK (x, t)"f (x, t), (1)

where w (x, t) is the displacement, m(x) the mass density, f (x, t) the external force (the sum of
the external disturbance and any control forces) and ¸(x) is a sti!ness operator, whose exact
nature depends on the structure. For example, for bending waves in a thin beam of uniform
section ¸(x)"EI L4/Lx4, where EI is the bending sti!ness. In the general case x may be
a one-, two- or three-dimensional position vector.

In the absence of any excitation (i.e., f"0), the eigensolution to this equation yields the
natural frequencies u

i
and mode shapes /

i
(x) of the uncontrolled structure. While analytical

solutions are available for some simple systems, in general these modal properties would be
found numerically using, for example, a "nite element model. The response can then be
expressed as a sum of an in"nite number of modal components as

w (x, t)"
=
+
i/1

/
i
(x)q

i
(t), (2)

where q
i
(t) (i"1, 2,2 , R) are the modal co-ordinates. (Of course in any numerical model

only a "nite number n of modes are retained.) Here, the mode shapes are assumed to be
mass-normalized such that

Pm(x)/
i
(x)/

j
(x) dx"d

ij
, i, j"1, 2,2 , (3)

where the integral is taken over the whole structure. The equations of motion can then be
written in terms of the modal co-ordinates by substituting equation (2) into equation (1),
multiplying by /

i
(x) and integrating over the structure, giving

qK
i
(t)#u2

i
q
i
(t)"f

i
(t), f

i
(t)"P f (x, t)/

i
(x) dx, i"1, 2,2, (4)

where f
i
is the ith modal force.

2.2. WAVE CONTROL

First, wave control is applied at one or more points where the structure is uniform, so that
the sti!ness operator becomes a di!erential operator with constant coe$cients and the
mass density m(x) is (locally) constant. For a one-dimensional structural member the
motion can then be decomposed into a number of di!erent waves (e.g., bending, axial or
torsional waves) which propagate in both directions along the member.

Suppose a control force is applied to a structural component which vibrates
solely as a thin beam in bending. Around the control location the equation of motion
reduces to

EI
L4w (x, t)

L4x
#m

L2w(x, t)

Lt2
"0. (5)



Figure 2. Collocated feedback control.
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where EI and m constants because the beam is uniform. Assuming time harmonic motion at
frequency u, the response can be written in terms of four wave components as

w (x)"a`e!ikx
#a~ eikx

#a`
N

e~kx#a~
N

ekx , (6)

where the wavenumber k"4Jmu2/EI . The "rst two wave components represent
propagating, energy-carrying waves, while the last two are near"elds, which decay
exponentially with distance and normally carry no energy over signi"cant distances. The
aim of the wave control is to absorb the energy associated with the propagating waves.

In this paper, collocated point force/sensor negative feedback control is assumed to be
applied at some point as shown in Figure 2. In the frequency domain, the wave control force
is given by

F(u)"!H
w

(u)=(u). (7)

The control is dynamically identical to an attached spring with a dynamic translational
sti!ness H

w
(u), which is normally frequency-dependent and complex [24, 25]. This

situation has been the subject of a number of studies [21}24, 26]. A propagating wave is
incident on the control location and gives rise to re#ected and transmitted propagating and
near"eld waves. It is shown in reference [21] that, if the objective of the control is to absorb
as much of the energy carried by the incident wave as possible, then the frequency response
of the optimal controller is given by

H(o)
w

(u)"2 4Jm3EI (1#i) u3@2 . (8)

The control in e!ect involves a spring and damper with frequency-dependent parameters.
The analysis in reference [21] assumes that the amplitudes of any incident near "elds are
negligible. If these exist then the performance of the control can deteriorate.

2.2.1. Real-time implementation

The optimal controller of equation (8) is non-causal. Hence, a real-time implementation
must be some approximation to this ideal. There are many possible approaches to the
implementation, and two are described here. In the "rst, the control is tuned to be optimum
at some design frequency. The second approach involves the implementation of a digital
FIR controller. This gives improved control from the wave perspective but complicates the
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design somewhat because of the requirement for a low-frequency approximation to the
wave control as described below.

In tuned wave control proportional-plus-derivative (PD) feedback control is
implemented, with the controller tuned so that it is equal to the optimal controller at some
speci"c frequency u

d
. The controller then has the frequency response

H
w
(u)"c

1
#c

2
(iu), (9)

where

c
1
"2 4Jm3EIu3@2

d
, c

2
"2 4Jm3EIu1@2

d
. (10)

In the time domain, this corresponds to a tuned spring}damper combination. PD control is
of course a classical control methodology, the control gains here being calculated from
a wave perspective to be optimal at some desired tuned frequency u

d
.

The second approach involves digital implementation using an FIR "lter. This o!ers
superior performance. A causal approximation can be found by "tting a causal FIR "lter to
the optimum controller of equation (8) in the least-squares sense in the frequency domain
[26]. This is in e!ect the same as truncating the impulse response of the optimal, non-causal,
in"nite-length FIR "lter. The choice of the FIR "lter length is a compromise between the
accuracy of the controller and the calculation time for the control output.

2.2.2. ¹ime domain representation and approximation

The wave control is designed in the frequency domain as described above. However,
a time domain representation is required for the subsequent design of the modal control.
If the force is applied at a point x"x

w
, then the wave control force is

f
w

(w, x, t)"f
w

(w (x
w
), t) d(x!x

w
). For tuned PD control this becomes

f
w

(x, t)"![c
1
w (x, t)#c

2
wR (x, t)] d (x!x

w
). (11)

For the case of digital control using a causal FIR controller, however, the time domain
representation is not so straightforward.

Suppose that the implemented wave controller has some frequency response H
w
(u). It is

convenient to approximate the controller by a polynomial in u in the low-frequency region,
where modal control is to be most e!ective. The real and imaginary parts are approximated
separately over this frequency range using a least-squares procedure as [26]

HK
w
"HK

real
#i HK

imaginary
, HK

real
"a#bu2, HK

imaginary
"cu. (12)

The polynomials are chosen to be second order or lower so that the order of the
system equations is not changed. The wave control force is thus approximated in this
low-frequency region by

f
w

(x, t)"![aw (x, t)!b wK (x, t)#c wR (x, t)] d (x!x
w
) . (13)

2.3. MODAL CONTROL

Modal control is now implemented by applying state-space control to the
wave-controlled structure. The equation of motion of the structure, equation (1), now
includes the wave-control force f

w
(x, t) of equation (13) (or equation (11) if PD wave control
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is used). The motion is expressed in terms of the modes of the uncontrolled structure as in
equation (2). The modal forces of equation (4) now become

f
i
"P f (x, t) /

i
(x) dx#P f

w
(w, x, t)/

i
(x) dx. (14)

Only the "rst n modes of the uncontrolled system are now retained. For collocated wave
control, and with the control force approximated by equation (13), the equations of motion
can thus be written in matrix form as

MqK#Cq5 #Kq"f, (15)

where f"[ f
1

f
2
2 f

n
]T is the vector of external modal forces and where M, C, and K are

mass, damping and sti!ness matrices (written in terms of the modes of the uncontrolled
structure) given by

M
ij
"d

ij
!b/

i
(x

w
)/

j
(x

w
), C

ij
"c/

i
(x

w
)/

j
(x

w
), K

ij
"u2

i
d
ij
#a/

i
(x

w
)/

j
(x

w
). (16)

In the absence of the wave-control force, the mass matrix M is an n]n identity matrix, C an
n]n zero matrix and K is a diagonal matrix of natural frequencies squared. However, the
wave control force couples the modes of the uncontrolled structure and the modes of the
wave-controlled system are therefore changed. Furthermore, equation (15) is normally
non-self-adjoint, so that the new modes are complex.

Upon introducing the state vector X(t)"[qT(t) : q5 T (t)]T, equation (15) is rewritten in
state-space form as

X0 (t)"AX(t)#Bf, (17)

where the coe$cient matrices are

A"C
0

!M~1K

I

!M~1CD , B"C
0

M~1D . (18)

For modal control design, the state-space equation is transformed from the state space to
the so-called modal space by using the eigenproperties of the characteristic matrix A. Denote
the eigenvalues of matrix A as K"diag(j

i
) (i"1, 2,2 , 2n), and the matrices of left and

right eigenvectors of matrix A as V and U respectively (two eigenvector matrices are
involved since A is asymmetric). By using the biorthonormality relations of the eigenvectors,
i.e., VTU"I and VTAU"K, and a linear transformation

X(t)"UZ(t) (19)

the state-space equation is transformed into the modal space as [27, 11]

Z0 (t)"KZ(t)#VTBf(t), (20)

where Z is called the vector of eigenmode states. The modal control design is then performed
in the modal space.

In distributed control, the modal control force f (x, t) is assumed to be (continuously)
spatially distributed across the structure. This raises profound implications for
practical implementations. If that distributed control is not realizable, the control task is to
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be carried out by means of r discrete actuators instead. Then the control force f (x, t) is
written as

f (x, t)"
r
+
j/1

F
j
(t) d (x!x

j
), (21)

where F
j
(t) is the amplitude of the control force at x

j
and d (x!x

j
) the Dirac delta function.

The modal control force is then given by

f(t)"U
F
F(t), (22)

where F (t)"[F
1
(t) F

2
(t)2F

r
(t)]T and U

F
"[/

i
(x

j
)], i"1, 2,2, n; j"1, 2,2 , r.

Substituting equation (22) into equation (20) gives

Z0 (t)"KZ(t)#PF (t), (23)

where P"VT BU
F
.

Since the control is designed in the modal space "rst, the control force F (t) is
written as

F (t)"!GT Z(t), (24)

where GT"[g
1
, g

2
,2 , g

2n
] is the control gain vector. Substituting equation (24) into

equation (23) gives

Z0 (t)"KZ(t)!PGTZ (t)"(K!PGT) Z(t). (25)

It can be seen from equation (25) that (K!PGT) is the characteristic matrix of the system
after control. By suitably designing G, one can design the eigenproperties of the controlled
system. One widely used method is pole allocation, in which the closed-loop poles of the
controlled modes are selected in advance and the control gains then computed so as to
match the desired closed-loop poles. The elements of the control gain matrix can then be
determined as described in references [27, 11]. For the particular case of a single control
force, which is considered in the experimental implementation below, U and G become
vectors, with the elements of G being [27, 11]

g
j
"!

<2n
k/1

(o
k
!j

j
)

p
j
<2n

k/1
kOj

(j
k
!j

j
)
, (26)

where p
j

are the elements of vector P and o
k

the desired closed-loop eigenvalues ( j,
k"1, 2,2 , 2n). The modal control force is then obtained by substituting the control gains
into equation (24).

Note that the above control design is based on the eigenmode state vector Z instead of
the actual sensor measurements. However, the relationship between the eigenmode state
vector and the actual sensor measurements can be easily established. First, the eigenmode
state vector Z and the modal state vector X are linearly related through the left eigenvector
of the characteristic matrix A as

Z(t)"VTX(t). (27)

The modal state vector X can be found from the actual sensor measurements using modal
"lters [28]. Assume that the modal control design is to control the "rst n modes and the
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sensor measurements are taken at n discrete points x
j
, j"1, 2,2, n. From equation (2) and

the de"nition of the modal state vector X, one has

X(t)"C
[UT

w
]~1 0

0 [UT
w
]~1D C

w

w5 D , (28)

where w"[w(x
1
) w(x

2
)2w (x

n
)] and U

w
"[/

i
(x

j
)], i"1, 2,2, n; j"1, 2,2, n. In the

case when the number of sensor measurements is greater than the number of modes to be
controlled, the pseudo-inverse can be used for the modal "ltering purpose [26].

From equations (27) and (28), the relationship between the eigenmode state vector and
the actual sensor measurements is established as

Z(t)"VT C
[UT

w
]~1 0

0 [UT
w
]~1D C

w

w5 D . (29)

Substituting equation (29) into equation (24) gives the matrix of control gains in terms of the
actual sensor outputs

R"!GTVT C
[UT

w
]~1 0

0 [UT
w
]~1D . (30)

In the numerical examples below the modal properties of the cantilever are known, while in
the experimental implementation they were "rst measured.

3. NUMERICAL EXAMPLES

In this section, some numerical results will be presented for a cantilever whose
geometrical and material properties are listed in Table 1. The lowest six natural frequencies
are given in Table 2. A disturbance is applied at one point, wave control is applied at
a second point and modal control is applied at two further points as given in Table 3. The
positions of these points are chosen so as to avoid the nodes of the "rst six modes.
TABLE 1

Physical and geometric properties of the beam

Young's modulus Density Width Depth Length
(GN/m2) (N/m3) (mm) (mm) (mm)

E o b h ¸

190 7800 40 2 600

TABLE 2

¹he ,rst six natural frequencies of the system

Mode number 1 2 3 4 5 6

Frequency (Hz) 4)46 27)97 78)33 153)49 253)73 379)03



TABLE 3

¹he locations of the disturbance, the controllers and the response point

Disturbance Wave Modal controllers Response point
controller

Location 0)1¸ 0)2¸ (1/6)¸ (5/12)¸ 0)7¸
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Numerical results show the response at a position x"0)7¸ per unit disturbance force. The
controlled and uncontrolled frequency responses are compared for the cases of wave control
alone, modal control alone and hybrid wave/mode control.

3.1. WAVE CONTROLLERS

Implemented wave controllers approximate the optimal control of equation (8). In the
approximation involving tuned PD control (equation (9)), the controller is tuned to be
optimal at 152Hz. This is close to the fourth natural frequency of the structure; i.e.,
somewhat above the frequency range where modal control is to be most e!ective. In the
causal FIR approximated implementation there are 20 terms in the FIR "lter.

The frequency responses of the wave controllers are shown in Figure 3, while Figure 4
shows the incident energy absorbed for the case where only one wave is incident on the
control location. In the ideal situation, half the incident energy is absorbed. The causal FIR
controller is seen to be a better approximation than the tuned controller except in a narrow
band around the tuned frequency.

3.2. RESPONSE AFTER CONTROL

Figures 5 and 6 show the frequency responses of the structure after application of the
wave controllers alone. Without control, clear, sharp resonances can be observed. The
di!erent wave controllers are seen to add damping to the structure, and the amount of
damping varies from mode to mode. They also change the natural frequencies somewhat.

It is seen that causal FIR control gives somewhat better performance. In both cases clear
resonant behaviour is still apparent around the lowest natural frequencies: wave control
approximates the optimum poorly in this frequency range, since it is designed to operate
over a relatively wide frequency band.

Relatively poor performance can also be seen at high frequencies. The degradation of the
performance at higher frequencies is due to the fact that the point of application of the wave
controller lies close to a node of the 6th mode. In wave terms, it lies close to the node of
a standing wave that exists, being re#ected from the built-in end of the cantilever. Such
e!ects depend on the speci"c form and location of the wave control. They can be minimized
by applying wave control at a boundary, by implementing wave controllers which sense
both displacement and rotation or by the suitable application of two or more wave
controllers.

Modal control can be designed to control any modes provided the knowledge of the
responses of those modes is adequate. Here the controller is designed to increase the
damping factors of the "rst two modes of the structure to 0)5. The pole placement approach
is adopted.



Figure 3. Frequency responses of wave controllers: (a) modulus; (b) phase;** optimal, - - - - causal FIR and
}} } } tuned PD controllers.
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Figure 7 shows the frequency responses before and after modal control. The lowest two
modes are clearly well controlled, while the remainder are virtually una!ected. Sharp
resonances associated with the uncontrolled modes, therefore, still exist. Including more
modes in the control design can alleviate this problem, but only at the cost of increased
model complexity.

Figures 8 and 9 show the frequency responses after application of hybrid control using
the tuned and causal FIR approximated wave controllers. The wave and modal controllers
are designed as described above. Hybrid control clearly adds substantial damping, giving
improvement over modal control alone. It also gives broadband control due to the
energy-absorbing nature of the wave control, reducing the e!ects of higher resonances and
spillover. Once again, causal FIR wave control gives somewhat better performance than
PD control.



Figure 4. Energy radiated after wave control, with various wave controllers:** optimal, - - - - causal FIR and
}} } } tuned PD controllers.

Figure 5. Frequency responses, - - - - before and ** after causal FIR wave control.
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4. EXPERIMENTAL RESULTS

4.1. EXPERIMENTAL SET-UP

The experimental set-up is shown in Figure 10. The properties of the cantilever beam are
given in Table 4. The modal behaviour of the beam was modelled in terms of the "rst "ve
uncontrolled modes. Thus "ve sensors were used and their outputs combined by passing
them through &&modal "lters'' to obtain the modal states.



Figure 6. Frequency responses - - - - before and ** after tuned PD wave control.

Figure 7. Frequency responses - - - - before and ** after modal control.
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Accelerometers were used to measure vibrations and three electromagnetic shakers used
to excite vibrations, one to create a disturbance signal, and the other two to create control
signals. The locations of the sensors and actuators are given in Tables 5 and 6 respectively.
The test signal used was a &burst chirp'' within the frequency range of interest. A
Hewlett-Packard HP3565B 8-channel analyser was used to both provide the test signal and
measure the frequency response of the system. Control was provided by a 100 MHZ
IBM-PC Pentinum computer with a Metrabyte A/D-Dash-16F expansion board. Low-pass
anti-aliasing and reconstruction "lters and power ampli"ers completed the arrangement.
More details can be found in reference [26].



Figure 8. Hybrid control with tuned PD wave controller; frequency responses -- - - - before control, } - } - } - }
after wave and ** hybrid control.

Figure 9. Hybrid control with causal FIR wave controller; frequency responses -- - - - before control, } - } - } - }
after wave and ** hybrid control.
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4.1.1. Modal analysis of the uncontrolled system

The accelerometers and actuators modify the dynamics of the system, whose modes
consequently di!er from those of a cantilever without their attachment. In particular, they
add damping and change the natural frequencies.

The modal properties of the system were measured experimentally prior to the control
design since they are required for the state-space design. The experimental modal analysis
was performed for the lowest "ve modes using the peak value method [29]. Proportional
damping was assumed. Figure 11 shows the measured frequency response and that



Figure 10. The experimental set-up. Shakers: 1. Wave control force, 2. Disturbance force, 3. Modal control force.

TABLE 4

Physical parameters of the experimental steel beam

Young's modulus Density Width Depth Length
(GN/m2) (mg/m3) (mm) (mm) (mm)

E o b h ¸

180 8600 40 2 600

TABLE 5

¹he locations of the sensors

Sensor 1 2 3 4 5

Location 100 mm 245 mm 400 mm 500 mm 580 mm

TABLE 6

¹he locations of the actuators

Actuator Disturbance actuators Wave control actuator Modal control actuator

Location 245 mm 100 mm 400 mm
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predicted using the identi"ed modes. The response is shown at a point 100 mm from the
clamped end. The agreement between simulation and experiment is good.

4.2. RESULTS

Wave, mode and hybrid controls were implemented. For modal control (see Figure 12)
the controller was designed to increase the damping factors of the second and third modes



Figure 11. Frequency response before control: ** predicted and - - - - measured.

780 C. MEI E¹ A¸.
to 0)7, with multi-input}single-output coupled modal control. The control gains were
obtained in the discrete time domain based on the experimentally measured or estimated
modal properties. Since accelerometers were used as sensors, the "rst mode responded very
weakly and consequently the control design was aimed at a frequency range somewhat
above this "rst natural frequency. Details are given in reference [26]. Wave and hybrid
control were applied using tuned PD and FIR wave controllers (see Figures 13 and 14
respectively). The tuned PD controller was tuned to 70 Hz, with the FIR controller being
a "lter with 20 terms. The results show measured frequency responses at a location 100 mm
from the clamped end. Generally, good agreement is obtained between measured and
predicted behaviours.

For the case of modal control, it can be seen from Figure 12 that signi"cant control is
added to the second and third modes. Control spillover is observed in the uncontrolled
residual modes. Wave control alone typically adds damping, but still leaves distinct
resonant behaviour for the lower modes. Hybrid control alleviates this resonant behaviour.
For both the predicted and the measured behaviour, the performance of the hybrid
approach is consistently better than wave or modal approaches applied alone.

5. CONCLUDING REMARKS

In this paper, a hybrid approach to active vibration control was described. In the
proposed approach, local, low-authority wave feedback control, designed on the basis of
local wave propagation, is implemented "rst, the aim being to absorb broadband
vibrational energy. After the implementation of the wave control, the equation of motion of
the system is modi"ed. Global, high-authority modal control is then designed, based on this
modi"ed equation, which aims to control the lowest few modes of the system. The speci"c
case of collocated point force/sensor wave control and pole placement modal control was
considered. Wave controllers were designed using either FIR "lters or tuned PD control.
Numerical and experimental results were presented for the active vibration control of
a cantilever beam.



Figure 12. Frequency response - - - - before and ** after modal control: (a) measured; (b) predicted.
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The hybrid approach exhibits better broadband active vibration control performance
than the cases with either modal or wave control alone. There is a reduction in the order of
the models required without there being a signi"cant increase in the system representation
associated uncertainty. Finally, the e!ects of the unmodelled modes are reduced and the
robustness is improved.

Alternative forms of wave and mode control could of course be used and would
consequently alter the detail of the implementation. For example, in the design of the wave
control, near "elds were ignored, although these can deteriorate the performance. In
a similar way, if propagating waves are incident from both sides of the control location then
they can interfere and the performance may again deteriorate. The wave controllers that
were implemented, however, were guaranteed to be stable, so there are no consequences for



Figure 13. Hybrid control with tuned PD wave controller, - - - - before control, } - } - } - } after wave control and
** after hybrid control: (a) measured; (b) predicted.
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closed-loop stability. These issues could be avoided in a number of ways, for example by
implementing wave controllers which sense both displacement and rotation or by the
suitable application of two or more wave controllers.
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Figure 14. Hybrid control with causal FIR wave controller, -- - - - before control, } - } - } - } after wave control
and ** after hybrid control: (a) measured; (b) predicted.
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